Revealing the Journey - Revealing Place:

...improving urban mobility through coordinated and designed geographic information

David Figueroa
T-Kartor USA Corp.
David.Figueroa@t-kartorusa.com
Goal

- Cities and Metros function better when residents and visitors move easily, aided by well planned transit options and a clear understanding of the urban landscape. Designed information systems, based on geographic information, can be a key factor for success.
Concepts

• Urban Mobility
• Geographic Data
• Designed Information Systems
Urban Mobility

• Complete journeys instead of pieces of a journey = intermodality

• Transit systems are modal (only their piece of the journey puzzle)

• Walking and biking now within intermodal thinking
Users benefit from a shift to intermodal information
Geographic Data

• We live in a data rich world…

• Transit now data driven = planning and performance

• Geography provides context, enables comparison, encourages collaboration
Designed information

- Legibility and quick understanding necessary for success
- Simplifies the complexity of urban landscapes and transit networks for better usability
- Derived from data and environmental cues
Information strategy
Do our brains pay a price for GPS?
How a useful technology interferes with our ‘mental mapping’ — and what to do about it

By Leon Nevfakh | GLOBE STAFF | AUGUST 18, 2013
London
Remains of Richmond Palace
A royal residence from 1125 until 1688. Henry VII (1509–47) built the Tudor palace and his arms are on the gatehouse.
Transit data to schematic

3.12 Process Model
This diagram illustrates the CCM production process for SYPTE.

Stage 1: Bus service information is retrieved from a database and formatted into a pre-defined form.

The data displays individual services from a chosen bus stop from that point on the journey onwards.

Stage 2: The data is interrogated by T-Kartor’s digital mapping system.

The process is automated and takes the relevant parts of the data, presents them in graphical format as per an established design criteria and creates a PDF of the diagram.

Stage 3: The schematic map is proof checked and altered by an artist if necessary.

Over 90% of these automated maps do not require editing and can be placed straight into the information product.

Stage 4: The map is placed within the information product.

It is complemented with timetables, ticketing information, a list of principal destinations and features a QR code which links customers to a real time departure site for the stop.

Stage 5: The information product is printed, laminated and displayed on street within an information totem.

The totem also features graphic modal identifiers and large print bus service numbers (some also display real time bus service data).
New York
Guiding principles

Simple

Predictable

Relevant
The mapping system

Sources __ Standards __ Designed Data __ Products
DOITT GIS
City agencies
Community input
Aerial imagery
Field analysis

Database
More than one map, a living database that is scalable, supports a wide range of products and seamlessly integrates with other digital information services.
Field Analysis
GTFS to schematic

Bartow Av/Co-op City Bl
① Approximate journey time in minutes
M7 Q50 23 23

You Are Here

Asch Loop
2
Bartow Av
3
Alcott Pl
3
Co-op City Bl
5

Co-op City Bl
6 3 5

Bellamy Loop N

Riverdale Av/ W 261 St
① Approximate journey time in minutes
M1 M1 M1 M10 M2 M2

You Are Here

Riverdale Av W 261 St
① Approximate journey time in minutes

Henry Hudson Pkwy W

You Are Here

Riverdale Av W 261 St
① Approximate journey time in minutes

Riverdale Av W 261 St
① Approximate journey time in minutes

Henry Hudson Pkwy W
In Conclusion

• Designed, unified transit and wayfinding information systems build confidence in the transit system and develop a better understanding of the urban landscape. This improves mobility and the experience of place.
Thank you

David Figueroa
T-Kartor USA Corp.
David.Figueroa@t-kartorusa.com