IDENTIFYING SPATIAL GAPS IN TRANSIT ACCESSIBILITY TO ENHANCE MARKET POTENTIAL

Srinivas S. Pulugurtha, Ph.D., P.E.
Rakesh Mora, B.S.
Venkata Ramana Duddu, B.S., E.I.

The University of North Carolina at Charlotte
Presented at 2009 GIS in Transit Conference
St. Petersburg, FL

Department of Civil and Environmental Engineering

INTRODUCTION
- Rapid growth in population
- Increasing travel demand and congestion
- Potential solutions / alternative
 - Includes enhanced public transportation
PUBLIC TRANSPORTATION

- Efficiency depends on
 - Accessibility
 - Fare
 - Frequency
 - Travel time
 - Comfort and convenience

OBJECTIVE

- Explore features available in commercial GIS software to estimate accessibility
 - Stop, route and regional level
- Identify spatial gaps in the transit system to enhance its market potential
STUDY AREA

- City of Charlotte, North Carolina
- Charlotte Area Transit System (CATS)
 - 3,622 Transit stops
 - 80 Routes

METHODOLOGY

- Selection of variables and weights
- Spatial analysis
- Data processing
- Estimate accessibility index for
 - Each transit stop
 - Each route
 - Entire study area
METHODOLOGY

Selection of variables and weights

<table>
<thead>
<tr>
<th>Selected variables</th>
<th>Assigned weightage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployed population</td>
<td>30</td>
</tr>
<tr>
<td>Auto ownership (0 or 1)</td>
<td>20</td>
</tr>
<tr>
<td>Population by age group</td>
<td>10</td>
</tr>
<tr>
<td>Low income group</td>
<td>30</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>10</td>
</tr>
</tbody>
</table>

Spatial analysis

- Generate 0.25 mile buffer around each transit stop and along each route
- Overlay census data layer with 2008 estimates to capture potential captive riders
METHODOLOGY

Data processing

\[U_i = \sum_j \frac{A_{ij}}{A_j} \times U_j \]

- \(U_i \): Number of unemployed in the buffer "i" around transit stop "s"
- \(U_j \): Number of unemployed in census block "j"
- \(A_{ij} \): Area of census block "j" in the buffer "i" around transit stop "s"
- \(A_j \): Area of census block "j"

METHODOLOGY

Estimating accessibility index for each transit stop

\[A_s = 0.3 \times U_s + 0.2 \times AO_s + 0.1 \times AG_s + 0.3 \times I_s + 0.1 \times E_s \]

- \(A_s \): Accessibility index for transit stop "s"
- \(U_s \): Total unemployed in buffer for transit stop "s"
- \(AO_s \): Population with auto-ownership 0 or 1 in buffer for transit stop "s"
- \(AG_s \): Age group between 15 to 74 in buffer for transit stop "s"
- \(I_s \): Low income population (< $25,000) in buffer for transit stop "s"
- \(E_s \): Ethnicity in buffer for transit stop "s"
METHODOLOGY

Estimating the accessibility index for each transit route

- Compare using 2 methods
 - Based on calculated accessibility for each transit stop along a route
 - Based on data by generating buffer along a route

Ar,s = 0.3 *Ur,s + 0.2 *AOr,s + 0.1*AGr,s + 0.3*Ir,s + 0.1*Er,s

- Ar,s = Accessibility index for transit route “r” based on buffers around transit stops
- Ur,s = Total unemployed in dissolved buffers along transit route “r”
- AOr,s = Population with auto-ownership 0 or 1 in dissolved buffers along transit route “r”
- AGr,s = Age group between 15 to 74 in dissolved buffers along transit route “r”
- Ir,s = Low income population (< $25,000) in dissolved buffers along transit route “r”
- Er,s = Ethnicity in dissolved buffers along transit route “r”
METHODOLOGY

Estimating the accessibility index for each transit route – based on route level data

\[A_r = 0.3 * U_r + 0.2 * AO_r + 0.1 * AG_r + 0.3 * I_r + 0.1 * E_r \]

- \(A_r \) = Accessibility index for transit route “r” based on buffer around the route
- \(U_r \) = Total unemployed in buffer for transit route “r”
- \(AO_r \) = Population with auto-ownership 0 or 1 in buffer for transit route “r”
- \(AG_r \) = Age group between 15 to 74 in buffer for transit route “r”
- \(I_r \) = Low income population (< $25,000) in buffer for transit route “r”
- \(E_r \) = Ethnicity in buffer for transit route “r”

METHODOLOGY

Estimating the accessibility index for entire study area

- Compare using 2 methods
 - Based on calculated accessibility for each transit stop in the entire study area
 - Based on data for entire study area
METHODOLOGY

Estimating the accessibility index for entire study area – based on transit stops

\[A_{e,s} = 0.3 \cdot U_c + 0.2 \cdot AO_c + 0.1 \cdot AG_c + 0.3 \cdot I_c + 0.1 \cdot E_c \]

- \(A_{e,s} \): Accessibility index for entire study area based on dissolved buffers around transit stops
- \(U_c \): Total unemployed based on dissolved buffers for entire study area
- \(AO_c \): Population with auto-ownership 0 or 1 based on dissolved buffers for entire study area
- \(AG_c \): Age group between 15 to 74 based on dissolved buffers for entire study area
- \(I_c \): Low income population (< $25,000) based on dissolved buffers for entire study area
- \(E_c \): Ethnicity based on dissolved buffers for entire study area

Estimating the accessibility index for entire study area – based on census block level data

\[A_{e,c} = 0.3 \cdot U_c + 0.2 \cdot AO_c + 0.1 \cdot AG_c + 0.3 \cdot I_c + 0.1 \cdot E_c \]

- \(A_{e,c} \): Accessibility index for entire study area based on census blocks
- \(U_c \): Total unemployed by census block “c”
- \(AO_c \): Population with auto-ownership 0 or 1 by census block “c”
- \(AG_c \): Age group between 15 to 74 by census block “c”
- \(I_c \): Low income population (< $25,000) by census block “c”
- \(E_c \): Ethnicity by census block “c”
ANALYSIS & RESULTS

Accessibility index for transit stops

<table>
<thead>
<tr>
<th>Accessibility Range</th>
<th>No. of Transit Stops</th>
<th>Percent of Transit Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>1 to 10</td>
<td>204</td>
<td>56.7</td>
</tr>
<tr>
<td>10 to 100</td>
<td>198</td>
<td>56.7</td>
</tr>
<tr>
<td>> 100</td>
<td>176</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Summary of Accessibility Index by Transit Stops

Accessibility index by route

<table>
<thead>
<tr>
<th>Accessibility Range</th>
<th>No. of Transit Routes</th>
<th>Percent of Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 to 2,501</td>
<td>45</td>
<td>56.3</td>
</tr>
<tr>
<td>2,501 to 5,483</td>
<td>32</td>
<td>41.3</td>
</tr>
<tr>
<td>> 5,483</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Summary of Accessibility Index by Routes

<table>
<thead>
<tr>
<th>Percent Served</th>
<th>No. of Potential Captive Riders Served by Routes</th>
<th>Percent of Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 25</td>
<td>31</td>
<td>63.8</td>
</tr>
<tr>
<td>25 to 50</td>
<td>15</td>
<td>21.3</td>
</tr>
<tr>
<td>50 to 75</td>
<td>4</td>
<td>7.5</td>
</tr>
<tr>
<td>> 75</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Summary of Percent of Potential Captive Riders Served by Routes
ANALYSIS & RESULTS

Area-wide accessibility index

Possible extension of existing routes to serve this area

Possible new route

Statistical analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Coefficient</th>
<th>T - Stat</th>
<th>P - Value</th>
<th>F - Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Stops</td>
<td>0.16</td>
<td>22.74</td>
<td>0.00</td>
<td>516.96</td>
</tr>
<tr>
<td>Routes</td>
<td>10.62</td>
<td>9.27</td>
<td>0.00</td>
<td>85.85</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Average accessibility index for transit stops is 105 and for routes is 2,591.
- Strong relation exists between ridership and accessibility index.
- Only 11 percent of the potential captive riders are served.