The Use of GIS in Bus Crash Analysis for Capital Metro

Boya Dai, AICP
Assistant Transportation Researcher
Texas A&M Transportation Institute

The analysis is performed based on Interagency Contract between Capital Metro and Texas A&M Transportation Institute.

The Capital Metropolitan Transportation Authority, commonly referred to as Capital Metro, is Austin's regional public transportation provider. It operates bus, paratransit services and a commuter rail system known as Capital MetroRail for Austin and several suburbs in Travis and Williamson counties.

Texas A&M Transportation Institute (TTI) is recognized as one of the premier higher education-affiliated transportation research agencies in the nation.
Overview

• Background
• Data Summary
• Process
• Analysis
• Conclusion
Overview

- **Background**
- Data Summary
- Process
- Analysis
- Conclusion
Background

Capital Metro Bus Collisions between FY2009 and FY 2014
Background

Interagency Contract for:

- **Phase 1**: Assessment of major contributing factors over last six years
 - Study crash distribution
 - Identify top five crash categories
- **Phase 2**: Research peer agencies and countermeasures used
- **Phase 3**: Identify countermeasures to pilot
- **Phase 4**: Evaluate countermeasures
Overview

• Background
• Data Summary
• Process
• Analysis
• Conclusion
Data Summary

- FY 2009 to FY 2014 crash data for fixed route services and paratransit.
 - Almost 3,900 incidents in the service area
 - Narrowed to 1,230 incidents with $1000 damages or more
 - Fields: report number, fiscal year, accident description, travel direction, etc.
Data Summary

- Texas Department of Transportation’s (TxDOT) Crash Records Information System (CRIS) database
 - Crash data collected from the Texas Peace Officer’s Crash Report (CR-3)
 - Record traffic crash with apparent damage of $1,000 or more, or when the crash resulted in injury or death
 - Only 11% of Capital Metro incidents match up with CRIS
Data Summary

• Operator and supervisor reports
 ▫ Operating Conditions
 e.g. direction of travel, vehicle action at the time of the crash
 ▫ Crash Contributing Factors
 e.g. lane width, fixed objects, parked vehicle
 ▫ Location Specifics
 e.g. street name, cross street name, specific address
Overview

• Background
• Data Summary
• Process
• Analysis
• Conclusion
Process

World Geocoding Service

- Online geocoding service
- Covert an address to an x,y coordinate and append the result to an existing record in a database

Input Fields:
- Single Field
- Multiple Fields: Address, Neighborhood, City, Subregion, Region, PostalExt, Country
Process

Inconsistent Address Specifics

- Street name
- Closest crossing street name
- Detailed address with block number
- Name of facilities
Process

Data Validation

- Add street suffix to the roadway name
 e.g. St. Ave. Dr. Ln. Rd. Blvd.
- Correct misspelling of street names
- Find out detailed address for terminals, stops, and facilities
- Multiple trials with geocoding
Process

Original and Corrected Addresses

<table>
<thead>
<tr>
<th>Original</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congress</td>
<td>Congress Ave</td>
</tr>
<tr>
<td>183 Frontage</td>
<td>US Hwy 183 Frontage Rd</td>
</tr>
<tr>
<td>Krieg Field</td>
<td>517 Pleasant Valley</td>
</tr>
<tr>
<td>Yard</td>
<td>2910 E 5th St</td>
</tr>
</tbody>
</table>

Intersection GeoCoordinates

<table>
<thead>
<tr>
<th>Intersection</th>
<th>GeoCoordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside Dr. & Interstate 35</td>
<td>30.247944, -97.73532</td>
</tr>
<tr>
<td>St Johns Ave. & Interstate 35</td>
<td>30.332764, -97.704143</td>
</tr>
</tbody>
</table>
Overview

• Background
• Data Summary
• Process
• Analysis
• Conclusion
Number of Bus Collisions

- **Collect Events**
 - Combines features that have the exact same X and Y coordinates
 - Converts event data to weighted point data

- **Highest Frequency Incident Locations**
 - Congress through downtown
 - Congress at Oltorf
 - Congress at Riverside
 - Lamar at US183
 - Pleasant Valley at 5th Street
 - Pleasant Valley at 7th Street
Bus Collision Density Analysis

- **Kernel Density**
 - Calculates density of points around each output raster cell.
 - Cell size and search radius greatly affect the final result.

- **High Density Areas**
 - Downtown
 - University of Texas at Austin
 - Riverside
 - Pleasant Valley
Bus Collision Hot Spot Analysis

- Hot Spot Analysis
 - Give a set of weighted features
 - Identify statistically significant hot spots and cold spots using the Getis-Ord Gi* statistic.

- Spots
 - Hot Spot: Central Austin
 - Cold Spot: North of US 290, Southern West Austin
 - Rest – Not significant
Bus Collision Rate

- Bus Crash/ Peak Hour Bus Volume

- High Crash Rate
 - Comal Street
 - Airport Boulevard
 - US 290 West around Loop 1/Mopac
 - Stassney Lane
 - William Cannon Blvd
 - Pleasant Valley
Capital Metro Vehicle Accident Classification Codes

VEHICLE ACCIDENT CLASSIFICATION CODES

Any accident code followed by an ‘m’ indicates mirror-only contact

INTERSECTIONS

1.0 Other vehicle fails to stop
1.3 CMTA unit fails to stop
3.0 CMTA unit turning
3.0m CMTA unit turning - mirror
3.4 CMTA unit turning RIGHT
3.4m CMTA unit turning RIGHT - mirror
3.5 CMTA unit turning LEFT
3.5m CMTA unit turning LEFT - mirror
5.0 Other vehicle turning
5.0m Other vehicle turning
5.4 Other vehicle turning RIGHT
5.4m Other vehicle turning RIGHT - mirror
5.5 Other vehicle turning LEFT
5.5m Other vehicle turning LEFT - mirror
5.6 Squeeze Play
5.6m Squeeze Play - mirror
6.0 All other intersection collisions (includes alleges, etc.)

BETWEEN INTERSECTIONS

1.4 CMTA vehicle sideswipes other vehicle
1.6 Other vehicle sideswipes CMTA vehicle
1.6m Other vehicle sideswipes CMTA vehicle - mirror
1.7 Mirror-to-mirror contact ONLY
1.8 Pulling from or to curb by other vehicle
1.9 Collision with standing/parked vehicle (includes opened doors)
1.9m Collision with standing/parked vehicle (includes opened doors) - mirror
2.0 Collision with vehicle entering from alley or driveway

MISCELLANEOUS

3.1 All contact with bicycles (formerly 3.0)
3.1m All contact with bicycles (formerly 3.0) - mirror
3.2 Collisions between CMTA passenger vehicles
3.3 Collisions between CMTA non-revenue vehicles

PEDESTRIANS

3.9 Pedestrian hit by CMTA vehicle
3.9m Pedestrian hit by CMTA vehicle - mirror
4.0 CMTA unit hit by pedestrian

MISCELLANEOUS COLLISIONS

4.5 Collision with (fixed) stationary object
4.5m Collision with (fixed) stationary object - mirror
4.6 Due to mechanical failure
4.7 Leaving Roadway
4.8 Collisions not otherwise classified
4.9 Collisions due to CMTA vehicle backing
Analysis

Top Five Crash Types (Over $1,000 damage)

- Bus collides with fixed object
- Bus sideswipes standing or parked vehicle
- Other vehicle fails to stop at intersection and collides with bus
- Other vehicle sideswipes bus
- Other vehicle rear ends bus
Top Crash Categories (over $1000 damage)

<table>
<thead>
<tr>
<th>Incident Category</th>
<th>Total incidents analyzed</th>
<th>Percentage of incidents (damage over $1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus collides with fixed object</td>
<td>147</td>
<td>14%</td>
</tr>
<tr>
<td>Bus sideswipes standing or parked vehicle</td>
<td>145</td>
<td>15%</td>
</tr>
<tr>
<td>Other vehicle fails to stop at intersection and collides with bus</td>
<td>136</td>
<td>12%</td>
</tr>
<tr>
<td>Other vehicle sideswipes bus</td>
<td>131</td>
<td>12%</td>
</tr>
<tr>
<td>Other vehicle rear ends bus</td>
<td>94</td>
<td>11%</td>
</tr>
</tbody>
</table>
Bus sideswipes standing or parked vehicle

- 145 analyzed incidents
 - 92% other vehicle parked
 - 7% other vehicle stopped or standing
 - 1% had no data.
Bus sideswipes standing or parked vehicle

- Cluster in downtown
- Other Vehicle parked (92%)
 - Bus Moving Straight (84%)
 - Cut in too soon
 - Misjudge the distance
 - Distracted or inattention
 - Bus Turning Right (8%)
 - Misjudge the turn
 - Avoid contact
- Over ¾ deemed preventable
Overview

• Background
• Data Summary
• Process
• Analysis
• Conclusion
Conclusion

• Use of GIS
 ▫ Purpose
 ▪ Identify accident-prone area
 ▪ Understand crash location by crash type and crash rate
 ▫ Major Function
 ▪ World Geocoding Service
 ▪ Collect Event
 ▪ Kernel Density
 ▪ Hotspot Analysis

• Future Analysis
 ▫ Before & After Analysis
 ▫ On-time Arrival Analysis
Contact

- Joan G. Hudson, P.E.
 - J-hudson@tamu.edu, 512-407-1112
- Boya Dai, AICP
 - B-dai@ttimail.tamu.edu, 512-407-1168