Bikesharing Effect on Transit Ridership: A Time Series Analysis of the Capital Bikeshare Program CaBi

Chao Liu, Ting Ma, and Sevgi Erdogan
National Center for Smart Growth Research & Education (NCSG)
University of Maryland, College Park

2015 GIS in Transit, September 1-3, 2015
Shared-use Vehicle Services and Transit Relationship
Capital Bikeshare and Metrorail

DC – 194 Stations
Arlington – 70 Stations
Alexandria – 8 Stations
Montgomery County – 41 Stations

Source: https://www.capitalbikeshare.com/stations
Questions we ask

• Is there a relationship between spatial pattern of bikeshare trips and rail station locations?
• Does spatial pattern of bikeshare trips change over time/by season?

➡ Spatial analysis

• Does bikeshare program affect transit ridership, if so, how?

➡ Econometric analysis
Spatial analysis
Origin – Destination (O - D) analysis
 • by year
 • by season

Econometric analysis
OLS regression analysis
 • Bikeshare program characteristics
 • Transit service characteristics
 • Built environment
 • Socio-demographics
Capital Bikeshare (CaBi) of D.C.

• Established in September 2010
• 321 stations, 2,500 bicycles, 22,200 members (as of July 2014)
• User profile:
 – Young (63% under 35)
 – Slightly gender skewed (57% male)
 – Predominantly white (80%)
 – Highly educated (95% with four-year college degree)

(source: 2013 Capital Bikeshare Member Survey Report)
Capital Bikeshare Installation Year

- 2010
- 2011
- 2012
- 2013

M Metrorail Stations

Quarter Mile Buffer
Origin-Destination (O-D) Analysis by Year

Number of trips by O-D pair

- 100 - 500
- 501 - 1,000
- 1,000 +

Metrorail Stations
From 2011 to 2013, program expended, number of trips increased
CaBi stations with highest ridership share similar built environment characteristics (except Tidal Basin)
- Woodley Park-Zoo
- Dupont Circle
- Union Station
- Eastern Market
- Crystal City
- Court House
- Tidal Basin

Co-location of CaBi and metro rail stations
Most commuting trips are shorter than other modes
2nd and 3rd quarter have the highest ridership
 – Tourist
 – Outdoor activities

Despite the seasonal change, two stations have the highest ridership throughout the year:
 – Dupont Circle
 – Capitol Hill Area (Eastern Market, Union Sta)

Some exceptions:
 – Students
Capital Bikeshare Installation Year

- 2010
- 2011
- 2012
- 2013

M Metrorail Stations
Quarter Mile Buffer
Variables and Data Sources

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Variables</th>
<th>Description</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit ridership</td>
<td>Average Daily weekday boardings of Metrorail station, walk or bike as egress and access modes</td>
<td>WMATA, 2013</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Category</th>
<th>Variables</th>
<th>Description</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bicycle sharing program</td>
<td>CaBi station number</td>
<td>The number of CaBi docking stations within a ¼ mile distance of Metrorail station</td>
<td>DDOT, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CaBi ridership</td>
<td>The total ridership of all CaBi stations within a ¼ mile distance of Metrorail station</td>
<td>CaBi and DDOT, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existence of CaBi station</td>
<td>1 for transit station with CaBi station within ¼ mile distance</td>
<td>DDOT, 2013</td>
</tr>
<tr>
<td></td>
<td>Transit service</td>
<td>Park & Ride</td>
<td>1 for transit station with Park & Ride facility</td>
<td>WMATA, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parking usage</td>
<td>1 for WMATA-owned parking facilities</td>
<td>WMATA, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus stops</td>
<td>The number of bus stops within a ¼ mile distance of Metrorail station</td>
<td>GTFS, 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM peak frequency</td>
<td>Number of trains in both directions in AM peak (7am - 10 am)</td>
<td>WMATA, 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal</td>
<td>1 for terminal station</td>
<td>WMATA, 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connectivity</td>
<td>Composite index including transit routes, coverage, speed, capacity, urban form, and etc.</td>
<td>NCSG, 2010</td>
</tr>
</tbody>
</table>
Variables and Data Sources (cont’d)

<table>
<thead>
<tr>
<th>Built environment</th>
<th>Variable</th>
<th>Description</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing density</td>
<td>Gross residential density (HU/acre) on unprotected land</td>
<td>SLD, 2012</td>
<td></td>
</tr>
<tr>
<td>Population density</td>
<td>Gross population density (people/acre) on unprotected land</td>
<td>SLD, 2012</td>
<td></td>
</tr>
<tr>
<td>Employment density</td>
<td>Gross employment density (jobs/acre) on unprotected land</td>
<td>SLD, 2012</td>
<td></td>
</tr>
<tr>
<td>Employment mix</td>
<td>8-tier Entropy employment mixture index</td>
<td>SLD, 2012</td>
<td></td>
</tr>
<tr>
<td>Street network connectivity</td>
<td>Number of intersections in transit station catchment areas</td>
<td>OSM, 2013</td>
<td></td>
</tr>
<tr>
<td>Centrality</td>
<td>Index of block group working age population accessibility relative to max CBSA accessibility</td>
<td>SLD, 2012</td>
<td></td>
</tr>
<tr>
<td>Regional job accessibility (auto)</td>
<td>Number of jobs that can be accessed within 30 minutes by auto</td>
<td>NCSG, 2012</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable
- **Transit ridership**
 - Average Daily weekday boardings of Metrorail station, walk or bike as egress and access modes
 - WMATA, 2013

Independent variables
- **Bicycle sharing program**
 - CaBi station number
 - The number of CaBi docking stations within a ¼ mile distance of Metrorail station
 - DDOT, 2013
 - CaBi ridership
 - The total ridership of all CaBi stations within a ¼ mile distance of Metrorail station
 - CaBi and DDOT, 2013
 - Existence of CaBi station
 - 1 for transit station with CaBi station within ¼ mile distance
 - DDOT, 2013
- **Transit service**
 - Park & Ride
 - 1 for transit station with Park & Ride facility
 - WMATA, 2013
 - Parking use
 - 1 for WMATA-owned parking facilities
 - WMATA, 2013
 - Bus stops
 - The number of bus stops within a ¼ mile distance of Metrorail station
 - GTFS, 2014
- **AM peak frequency**
 - Number of trains in both directions in AM peak (7 am - 10 am)
 - WMATA, 2013
- **Terminal**
 - 1 for terminal station
 - WMATA, 2011
- **Connectivity**
 - Composite index including transit routes, coverage, speed, capacity, urban form, etc.
 - NCSG, 2010

Built environment
- **Housing density**
 - Gross residential density (HU/acre) on unprotected land
- **Population density**
 - Gross population density (people/acre) on unprotected land
- **Employment density**
 - Gross employment density (jobs/acre) on unprotected land
- **Employment mix**
 - 8-tier Entropy employment mixture index
- **Street network connectivity**
 - Number of intersections in transit station catchment areas
- **Centrality**
 - Index of block group working age population accessibility relative to max CBSA accessibility
- **Regional job accessibility (auto)**
 - Number of jobs that can be accessed within 30 minutes by auto
 - NCSG, 2012
OLS Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>Model 1: full model</th>
<th>Model 2: Parsimonious model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4.39</td>
<td>1.0</td>
</tr>
<tr>
<td>log(CaBi ridership)</td>
<td>0.28</td>
<td>0.06</td>
</tr>
<tr>
<td>Log(transit connectivity)</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>log(AM peak frequency)</td>
<td>0.49</td>
<td>0.20</td>
</tr>
<tr>
<td>Log(housing density)</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Log(employment density)</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>Log(bus stops)</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>log(street network connectivity)</td>
<td>-0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Log(median household income)</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.81</td>
<td>-</td>
</tr>
</tbody>
</table>
• 10% increase in bikesharing ridership will lead to 2.6% increase in transit ridership
• Employment concentration at the transit station areas has stronger impacts on transit ridership than residential concentration
• 10% increase in transit frequency will lead to 4.9% increase in transit boarding
• Bus connection are also important to provide egress and access connection
Remarks

• Spatial patterns of bikeshare stations in both urban and suburban areas
 – Denser, mixed land use, vibrant historic districts
 – Closer to rail transit
 – Varies by season, by location (urban vs. suburban, special OD e.g. university, tourist attraction)

• The close interactions between bikeshare program and rail
 – Higher bike ridership → higher transit ridership
Limitations & Future Research

- Time-series analysis on bikesharing and transit
- Magnitude of effects, transit vs. bike
- Only 40% CaBi trips are commute trips, trip purpose data is missing
- Unobserved characteristics e.g. short trips due to free first 30 min
- Impacts of transit on bikesharing?
- Improving model, e.g. time-series, additional variables e.g. bike lanes
Thanks!

Q&A